Specification of Thermoelectric Module TEFC2-29-10-052

Description

The TEFC2-29-10-052 is a multistage module with metalize and coat surface designed for greater temperature differential cooling, good for cooling and heating up to $100 \,^{\circ}$ C applications. It is a 29-10 couples module in size of $4.8 \, \text{mm} \times 4.8 \, \text{mm}$ (top) / $6.4 \, \text{mm} \times 6.4 \, \text{mm}$ (bottom). If higher operation or processing temperature is required, please specify, we can design and manufacture according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th(°C)	27	50	Hot side temperature at environment: dry air, N ₂
DT _{max} (°C)	96.3	108.1	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side
U _{max} (Voltage)	3.64	3.97	Voltage applied to the module at DT _{max}
I _{max(} amps)	0.52	0.52	DC current through the modules at DT _{max}
Q _{Cmax} (Watts)	0.61	0.66	Cooling capacity at cold side of the module under DT=0 °C
AC resistance(ohms)	5.83	6.28	The module resistance is tested under AC
Tolerance (%)		10%	

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:

B. Sealant:

1. T100: BiSn (Tmelt=138°C)

1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217°C)

2. SS: Silicone sealant

3. T240: SbSn (Tmelt = 240° C)

3. EPS: Epoxy sealant

C. Ceramics:

D. Ceramics Surface Options:

1. Alumina (Al₂O₃, white 96%)

1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN)

Metalized

Ordering Option

Suffix	Thickness (mm)	Flatness/ Parallelism (mm)	Lead wire length(mm) Standard/Optional length
TF	$0:4.03\pm0.10$	0: 0.05/0.05	50 ± 3 / Specify

Specification of Thermoelectric Module

TEFC2-29-10-052

Performance Curves at Th=50 °C

Standard Performance Graph $V= f(\Delta T)$

Standard Performance Graph Qc = f(I)

Specification of Thermoelectric Module

TEFC2-29-10-052

Performance Curves at Th=27 °C

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 40 °C

Standard Performance Graph COP = f(V) of DT ranged from 60 to 80/90 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Storage module below 100 °C
- Operation below I_{max} or V_{max}
- Work under DC